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Abstract

A micromechanical formulation is presented for the prediction of the overall thermo-

inelastic behavior of multiphase composites which consist of short fibers. The analysis is

an extension of the generalized method of cells that was previously derived for inelastic

composites with continuous fibers, and the reliability of which was critically examined

in several situations. The resulting three-dlmensional formulation is extremely general,

wherein the analysis of thermo-inelastic composites with continuous fibers as well as

particulate and porous inelastic materials are merely special cases.

1 Introduction

Modeling of the constitutive response of advanced composite materials continues to be an

important part of these strategic materials' development. Analytical models that predict the

effective behavior of composites are used not only by mechanicians in structural analysis of

large-scale composites but also by materials scientists in developing new material systems.

For an analytical model to fulfill these two distinct functions, it must be based on the

micromechanics approach which allows one to generate the average response of a composite

material from the properties of the individual constituents and their geometric arrangement.

Only then can such a model be used by a material scientist to investigate the effect of different

deformation mechanisms on the overall response of the composite in order to identify the

appropriate constituents for a given application. At the same time, a micromechanical model,

if it is to be used in a large-scale structural analysis program, must be computationally

efficient in addition to being able to generate accurate displacement and stress fields at
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both the macro- and micro-level. Knowledgeof accuratefield quantities at the micro-level
is important in predicting failure of a structural element.

A number of models presently exist that can fulfill one or the other of the aforementioned

tasks. On the other hand, there are very few working models that are both computationally

efficient and sufficiently accurate at the micro- as well as the macro-level to satisfy the distinct

needs of the material science and structural mechanics communities. One such model is the

method of cells (Aboudi (1991)) and its generalization (Paley and Aboudi (1992), Aboudi

(1993)) which is believed to have the potential of fulfilling both aforementioned tasks.

In the original formulation of the method of cells, a continuously-reinforced, unidirectional

fibrous composite is modeled as a rectangular, doubly-periodic array of fibers embedded in

a matrix phase. The periodic character of the assemblage allows one to identify a repeating

unit cell that can be used as a building block to construct the entire composite. The proper-

ties of this repeating cell are thus representative of the properties of the entire assemblage.

The unit cell consists of a single fiber subcell surrounded by three matrix subcells. Hence

the name method of cells. The rectangular geometry of the repeating unit cell allows

one to obtain an approximate solution for the stresses and strains in the individual subcells

given some macroscopically homogeneous state of strain or stress applied to the composite.

The approximate solution to the thus posed boundary-value problem is, in turn, used to

determined macroscopic (average) or effective properties of the composite. The macroscopic

behavior is displayed in terms of: effective elastic moduli; effective coefficients of thermal ex-

pansion; effective thermal conductivities; and effective stress-strain response in the inelastic

region.

In the generalized method of cells for continuous fibrous composites, the repeating unit

cell can consist of an arbitrary number of phases. Hence the generalized method of cells is

capable of modeling a multiphase composite. This is of importance since even a two-phase

composite with a metallic constituent behaves after the development of plasticity effects as

a multiphase composite. A user's guide for a computer program based on the generalized

method of cells has been recently presented by Aboudi and Pindera (1992).

In the original formulation of the method of cells for short-fiber composites, the unit cell

consists of a single region occupied by the inclusion, surrounded by seven distinct matrix

regions.

In the present paper the generalized method of cells is developed and formulated for

the modeling of multiphase thermo-inelastic short-fiber composites. The presented three-

dimensional micromechanical analysis consists essentially of four steps. It starts by iden-

tifying a repeating volume element of the periodic multiphase composite, followed by the

definition of macroscopic average stresses and strains from the microscopic ones. In the third

step the continuity of tractions and displacements are imposed at the interfaces between the

constituents. These establish, in conjunction with micro-equilibrium, the relationship be-

tween microscopic total, thermal and plastic strains and macroscopic strains via the relevant

concentration tensors. In the final step the overall macroscopic constitutive equations of

the composite are determined. These four steps form the basis of micro-to-macromechanics

analyses which describe the behavior of heterogeneous media (Suquet, 1985). The resulting

three-dimensional micromechanical analysis establishes the overall elasto-plastic behavior of

the multiphase thermo-inelastic composites. This is expressed as a constitutive relation be-

tween the average stress, strain, thermal and plastic strains, in conjunction with the effective



elastic stiffness tensor.

The micromechanically established constitutive equations are consistent in the sense that

when they are employed to predict the effective coefficients of thermal expansion of the

multiphase composite, they provide the same estimate obtained from Levin's result (1967). In

the latter, the overall coefficient of thermal expansion is expressed in terms of the properties

of the constituents in conjunction with the mechanical concentration factors. Similarly,

the derived constitutive equations are also consistent in the sense that the resulting overall

inelastic strain of the multiphase composite coincides with the expression obtained by Dvorak

(1992). Here the overall inelastic strain is expressed in terms of the inelastic strains of the

phases in conjunction with the mechanical concentration factors. Both Levin's and Dvorak's

results follow from the relationship between the overall and local transformation fields which

can be established by invoking the reciprocal theorem (Dvorak and Benveniste (1992)).

2 Model Description

Consider a composite material with a periodic structure whose repeating volume element

consists of N_ × N_ × N.y rectangular parallelepiped subcells. The volume of each one of

the subcells is d_ha_, where a,/3 and 7 are running indices: a = 1,..., N_ ;/3 = 1,... N_

; 7 = 1,...,N., in the xl , x2 and x3 - directions, respectively. The total volume of the

repeating volume element is dh_ where d = No N__=1 d_ , h = _=1 ha , £ = _N--'I G" In Fig.

1 an example is shown for a repeating volume element with No = 3, N_ = 4 and N.y = 2.

Each of the subcells can be filled, in general, by an elastic-viscoplastic temperature -

dependent material. Consequently, the overall behavior of the composite should simulate a

multiphase thermo-viscoplastic composite. By appropriately selecting the subcells dimen-

sions or, alternatively, by appropriately filling the subcells, various types of composites can be

considered. Thus, unidirectional long-fiber composites, short-fiber composites, porous ma-

terials and laminated materials can be modeled as special cases. Consequently, the present

micromechanical multiphase composite model is very general and various situations can be

obtained as special cases.

By an approximate micromechanical analysis of the detailed interactions of the subcells

of the repeating volume element, overall constitutive relations which govern the effective

behavior of the multiphase viscoelastic composite, can be established. This analysis relies

on the requirements that static equilibrium of the materials in the subcells are ensured,

and that continuity of the displacements and tractions between neighboring subcells within

the repeating volume element, as well as between neighboring repeating volume elements is

satisfied on an average basis.

Let us introduce local coordinates (_),-2_'(_), -_3_('Yhjwhose origin is located at the center

of the subcell (a137). These local coordinates are shown in Fig. 2 for subcell (aft3') and the

neighboring one (&7/3) in the Xl - direction, where & is defined to have the form

_=[ a+l a<g_ (1)
[ 1 a=Na

This definition ensures that for a < No the neighboring subcell in the xl - direction is

the one labelled by (c_ + 1,/_,7) within the repeating volume element, whereas for a = N_
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the neighboringsubcell is within the next repeating volume element whosefirst subcell is
(1fl7). Similarly, fl and "_ are defined by

_={ 1_-4-1 fi=N_fl<N_ (2)

._=_ q'+l 7<N_ (3)
1 7=N.yt

Since the average behavior of the composite is sought, it is sufficient to consider a first
utah-y) •order theory in which the displacements i m the subcell are expanded linearly in terms

of the distances from the center of the subcell, i.e., in terms of ._), _), and _(3"v). Thus, the

following first order expansion in the subcell (a_7) is considered

i =o_i +_-, wi +-2 tti +x 3 tpi i=1,2,3 (4)

where w! _È'y) are the displacement components at the center of the subcell, and ¢!_gz), X! _z'r)

and ¢!,,a7) are microvariables that characterize the linear dependence of the displacement
u(af_7)

, on the local coordinates 5:__), 27), 5_('y). In eqn. (4) and the sequel, repeated Greek

letters do not imply summation. Note that due to the linearity of eqn. (4), static equilibrium

of the material within the subcell (aflT) is ensured.

The components of the small strain tensor are given by

_(-_) _ lt,_.u(-_) _. (-Z_)_
_j - 2 _, j +_'j-i ) i,j=1,2,3

where 01 = 0/05:I ") , 02 = 0/O_ _) and 0 3 = 0/0_7(31} .

The average strains in the subcell, _!_-v) are given according to eqns. (4)-(5) by

(5)

_1 z_)

2_ _)

(6)

The average strains in the composite are expressed as

1 No -"% N-, _'_)

a=l/3=1 _,=1

The constitutive equation of the elastic-viscoplastic temperature-dependent material that

occupies subcell (aft7) is expressed as a relationship between the averages of stress #_(_'_),

total strain _ij;(_a_),inelastic strain ¢ij;l(aa_), and the thermal strain _T(_w) ----'-'ij^'(_a'_)AW''_( where
(_(-_-_)

ij is the coefficient of thermal expansion tensor, and AT is the temperature deviation

T - Tn from a reference temperature Tn) , i.e.

0.(,_'_) p(,_t_'_)tz(,_'0 fl('_'_) _ _Tt('_'_) )ij = t"ijk_ k"k_ -- "k_ (8)



m(_) is the elastic stiffness tensor of the material.where "_'ijkg

The average stress in the composite is determined from

1 N_ N_ N_ _(_'t)
E E E (9)
a=l _=1 _/=1

It will be shown in the following that by employing the displacement and traction conti-

nuity conditions at the interfaces between the subcells of the repeating volume element, and

at the interfaces between neighboring repeating volume elements, it is possible to eliminate

the microvariables and obtain, via a smoothing operation (homogenization), a set of con-

tinuum equations that model the overall behavior of the multiphase short-fiber composite.

This is achieved by establishing relationships which connect the microstrains at the subcells

to the total overall macrostrains in the composite via the appropriate concentration tensors.

3 Interfacial Continuity of Displacements

At any instant, the displacement components must be continuous at the various interfaces

of the repeating unit cell, and at the interfaces between neighboring repeating cells. This

implies that for a = 1,..., N_ ; 3 = 1,..., N_ ; 7 = 1,..., N_ , the following relations hold

u(_) . (_7)

2

(10)

(11)

: 2 "_ : 2

(12)

Notice that with the definition of &,/_ and -_, eqns.(1)- (3), continuity of the displacement

at the interfaces between neighboring repeating cells is ensured.

Continuity conditions (10) - (12) are imposed at the interfaces in an average sense. For

example, eqn. (10) is applied in the form

h_/2 J-l._/2 = ._ "2 t*'_3

J-h_12 s-t_12 = --_

Using eqn. (4) in (10) one obtains

w(_zT) 1 d _(_) w (_'z'_) 1 d_dfi_.y )

(13)

(14)



Two similar equationswould result from the useof eqn. (4)in (11) and (12):

w(,_,) 1 h - (o,t_w) w}O,_,) 1 h - (,_.v)
, + : ex, = - : _x, (15)

w(,e_) lg ,/,!_0.y) -("_)-lg^,/, D_ (16)
i +2 "Y_" --wi 2 "Y"'

All field variables in eqn. (14) are evaluated at the center line x_ a) of the subcell (agO'),

and at the center line x_"-') of the subcell (_flO'), see Fig. 2. In the final form of the displace-

ment continuity relations it is required to evaluate all terms at a common location. To this

end, let x_ *) denote the location of the interface between subcell (aft'),) and the following one

(Sfl'),). It follows that

xl ") x_ ') Id (17)

In addition, the location of the center line x_ _ of the subcell (Silo') with respect to x_ I)

is given by

l-d^ (:8)4a)= 4')+ 2 °
By expanding the field variables in eqn. (14) in Taylor's series about the common interface

x{ 1) and dropping second order terms, we obtain

w(_,_._) l_d tO__O_w!,_.v)_C!,_e.y)) . (ae-y) 1 d 0 w!g_.y) _ ¢!a_,)) (19)
i -- 2 ol,OX 1 , = u]i -_- _ a(_X 1 "

where all field variables in (19) are evaluated at the common interface x_ I) The discrete

structure of the composite is eliminated by a smoothing operation according to which eqn.

(19) is assumed to be valid at any point of the homogenized medium, which effectively

represents the multiphase composite, for all a, fl and 3'. For a composite subjected to

homogeneous boundary conditions, the behavior of all repeating cells is identical and a

uniform field exists at the equivalent homogeneous medium.

Let F (_) be defined as:

where

F,(")=w,-(°_")+ f[_)- _,-(_")+ f!:) (20)

f!o)_ _1_ (ow!.,,) _ ¢!._.))
- 2 " Oxa

Consequently, equations (19) can be rewritten as

(21)

F (_)=0 , a=l,...,No (22)

A similar derivation based on eqns. (15) -(16) would respectively provide the following
two relations
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G! _)=0 , fl=l,...,N_ (23)

and

H!3")=0, 7=1,...,N3"

where the following definitions have been employed

(24)

(25)

H! "y). = _,"(_a3")+ .-,h(_')-- w! °'_. + h! _ (26)

g!_)- i h ,°__w!-_)_ x!-_3"))
--2 _( Ox2 "

(27)

h!3")- -1-e _Aw!"_") _ ,/,!°_3")) (28)
- 23" _Ox3 ' "_'

Like eqn. (22), eqns. (23)-(24) are simultaneously valid at any point of the homogenized

medium, which effectively represents the multiphase composite subjected to homogeneous

boundary conditions, for all _, fl and 7.

From eqns. (22)- (24) we obtain, respectively, that

Na Na N._

E r__)= o , EaT ) = o
c_=l _=1 3'=1

The three summations provide, respectively, that

, E H! 3")= 0 (29)

E f!°) = o , E g!')= o , E h!3")= o (30)
o_=1 /3'=1 3"=1

Since

O--O--'f(c')cOxl= 0 , COx20g!fO = 0 , cox3hiO(3")= 0 (31)

for all o_, _ and 7, it follows by differentiation of eqns. (22), (23) and (24) with respect to

xl , x2 and x3, respectively, that

0 w(,_3") 0 . (_a3")
' -0-_, _`

(9 . (aB'_) 0 . (a_3")

cOx3wi = cOx3_i

(32)



Equations (31) are satisfiedby assumingthat commondisplacementfunctions, wi, exist

such that

w! _') = wi (33)

for all a, /3 and 7. This assumption is consistent with the fact that the entire repeating

volume element of the periodic composite is mapped by a smoothing operation into a single

point within the equivalent continuum medium. The displacement components at this point

are w i .

Using eqns. (33), we readily obtain from (30) the following set of continuum relations

No 0 /3 = 1,...,No (34)
o=1 "7= 1,... ,N.y

m O , No
Z..,x""r . (,_O'Y) h _wi a = 1,... (35)nOX i =
13=1 _/ = 1, . . . , N._

£ a = 1,...,N_ (36)N7 P ,/)!otO'_) = _ Wi "', NO
"r=l _')'w, ' fl = 1,.

Continuum relations (34)-(36) are expressed in terms of the microvariables _(_0-Y) . (_07)"r, , Xi ,

_b!_o'_). It is possible to derive an equivalent system of equations which are expressed in

terms of the average subcell strains tij .

The average composite strains, _ij, were defined in eqn. (7). Let us first show that

_ l(Owi Owj) (37)
eij = 20xj + Oxi

For i = j = 1, let us multiply eqn. (34) by hog. _ and perform a summation over fl from

1 to NO, and over 7 from 1 to N. v This provides

No N_ N.,_ _ do,hog.r¢_ _O'O = dhg (38)
o=1 O=l "y=l

Comparing eqn. (38) with (7) and using the first equality in (6), gives _u = 0_"

For i = 1, j = 2 let us multiply eqn. (34) with i = 2 by h_e., and perform a summation

over fl from 1 to N0, and over 7 from 1 to N_. Similarly, let us multiply eqn. (35) with

i = 1 by d_g_ and perform summations over all a and 7. By adding the resulting relations
we obtain

a,B,'y

(39)

Again, using the last equality in (6) in conjunction with equation (7) and comparing this

to the above expression gives g,2 = ( 0_-_,+ _)/2. In a similar manor the other four relations

in (37) can be established.
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It is now possibleto expressthe continuum eqns. (34)-(36) in terms of _(_3")and -cij _ij.

Setting i = 1,2 and 3 in (34)-(36), respectively, we obtain

N_t

,I _("_3") /3 = 1,..., Nat*c_ _11 = dell , (40)
o=1 7 = 1,...,N_

N_ a = 1,...,N_

a=l 7 = 1,...,N3"

N, a = 1,...,N_

_,=1 " " " '

ha_ a3") = h_22

The addition of eqn. (34) (with i = 2) multiplied by h a and

(with i = l) multiplied by d_ and summed over all a, yields

(41)

(42)

summed over all fl, to (35)

i.e.,

E E  .ha(4 +
a=l/3=1

N_Na

___ _ doha_ z'r) = dhG2 , 7 = 1,...,N3" (43)
ct=l/3=1

which are the desired continuum equations expressed in terms of subcell and average strains.

Similar operations give

N_N,

na_7c23 = h_23 , a= 1,...,N_ (44)

_=1 3"=1

No N_

d g _(,_a3") dg_3 , _ = 1 . Na (45)EE o3", = ,..,
_=1 3'=1

Equations (40) - (45), form a set of N,_Na + NAN3" + N_,N3" + N,_ + N_ + N3" relations

which replace eqns. (34)-(36). These relations can be written in a matrix form as follows

AG ¢, = J_:

where the 6-order average strain-rate vector is defined by

(46)

= (_11 , _22 , _33 , 2e23 , 2e13 , 2e12)

and the 6N_,N_N.y order subcell strain vector, e,, is defined by

(47)

_._ = (_(,m), . . . , _(N,,NaN.,)) , (48)

where the 6 components of the vector _(_a3") are arranged as in eqn. (47). The matrix Aa is

N.( Na+ N3"+ I )+ N,( N3"+ I )+ N3" by 6 gog, g3", while J isa N.( N,+ N3"+ I )+ N_( N_ + I )+ N,

by 6 matrix. It should be noted that the matrix Ac involves the geometrical dimensions of

the repeating cell only.



4 Interfacial Continuity of Tractions

The tractions must be continuous at the interfaces between the subcells of the repeating

cells, and at the interfaces between neighboring repeating cells. These conditions, imposed

in an average sense, give

_(_,) _(_,)
li ---- "" li

_(_) = _'_} (49)2i

3i w •

where i = 1,2,3 ; a = 1,...,N_ ; fl = 1,...,N_ and 7 = 1,...,N., It can be easily

verified that these equations involve some repetitions. It can be shown that the system of

independent interfacial conditions is

a = 1,...,N_ - 1

fl = l,...,N_

"7 = 1, . . . , N.y (50)

a=l,...,N_

fl= 1,...,N_- 1

7 = 1,...,N_ (51)

a= 1,...,N_

fl = l,...,Nz

7= 1,...,g.y- (52)

a = 1,...,g_

fl= 1,...,gz- 1

7=l,...,N_ (53)

a= l,...,N_

Z=
7 = 1,...,N._- (54)
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a = 1,...,N_ - 1

fl = l,...,N_

7 = 1,...,N.y (55)

a=N.

fl = l,...,Nz

7 = 1,...,N._- (56)

a = 1,...,N,_ - 1

fl = l,...,N_

7 = 1,...,N_ (57)

a=N.

fl=l,...,N_-I

7 = 1,...,N_ (58)

As in the case of the displacement continuity conditions, the continuum model requires

that for a composite subjected to homogeneous boundary conditions, conditions (50) - (58)

are satisfied at all points of the homogeneous equivalent medium. By using the constitutive

laws (8), it is possible to represent eqns. (50)-(58) in matrix form, that is,

i _) 0 (59)A M(es - e s - =

where the6N_N_N_-(N_Nz+ N_N_ + NaN_)-(N_ + NO+ N_) by 6N_N_N_ matrix AM

involves the elastic properties C (_a_) of material in the subcell, and

i (don) ., dtN°Nam)) (60)

T (_T(,,,) .,_T(NoN_N_)) (61)E"s = ,..

5

The combination of equation (59) and (46) leads to

Ae,- b(e / + eT) = K_

where

Overall Inelastic Thermomechanical Constitutive Law

(62)

11



Solving eqn. (62) for the subcell strains e8 yields

[0], K= j

where

E, = A_ + D(E_ + eT) (63)

A=._I-'K , D=A-'D

Let the mechanical concentration matrix A be partitioned into N_NzN.y 6-order square

submatrices in the form

Similarly, let

A 011)

A=

A(N.N_N_)

D on )

D=

D(NoN_N_)

where D ("_'y) are square matrices of 6N,_N_N.y order.

It follows from eqn. (63) that

(64)

(65)

_("_) = A("a_)_ + D("a_)(_ + ET) (66)

Equation (66) expresses the average strain in the subcell in terms of the uniform overall

strain _ (the applied macrostrain) and the subcell inelastic and thermal strains, via the con-

centration matrices A ('_z_) and D (_z'_). Notice that the same matrices D (_) are operating

on both the inelastic and thermal strains of the subcells.

It was shown by Dvorak and Benveniste (1992) and Dvorak (1992) that for any rep-

resentative volume element under a uniform overall strain _ and temperature change AT,

which contains a piecewise uniform distribution of thermal and inelastic fields (eigenstrains)

associated with the applied loading _ , the averages of the local strain can be expressed in

terms of the mechanical and eigenstrain concentration tensors. These tensors depend on the

local elastic moduli, and on the shape and volume fraction of the phases and are therefore

constant. Equation (66) is consistent with this representation of the average subcell strain,

where the constant mechanical and eigenstrain concentration tensors are given by A ("_)

and D ("_), respectively.

Substitution of equation (66) into (8) yields

d(,_) = C(,Z_)[A(,Z_)_ + D(,Z_)(E_ + _T)_ (_,(,_) + eT(o_))] (67)

Consequently, in conjunction with eqn. (9), the following effective elastoplastic thermo-

mechancial law of the composite can be established

12



a = B'(_ - _' - _r)

where the effective elastic stiffness tensor, B*, of the composite is given by

(68)

1 N_'N_N_

o=1 fl=l 7=1

and the composite inelastic strain tensor is defined as

(69)

_1_-B*-I No Na N_
dhl. _ _ _-" d°h_e_C(_'_)(D(°Z7)e_ - _'(_7)) (70)

o=1 fl=l 7=1

and the average thermal strain tensor as

_T__ -B*-I N(_ N_ N._
dhe _ _ _" d'_h_L_C(°_7)(D(°_7)ET - _T(-_7))) (71)

a----1 _----1 7=1

The effective coefficient of thermal expansion vector, c_* of the composite, is given by

or* = _:T/AT

It can be numerically verified that the effective thermal stress vector/'*

in accordance with Levin (1967) result by

(72)

----B*_* is given

1 N_ Na1%

I" - dht E E E doh_t7Ar(°_7)I'(°_7) (73)
o=1 _=1 7=1

where A T(°_'_) is the transpose of A ('_7), and r (°_7) is the thermal stress vector of the

material filling subcell (aft7) . This implies that the generalized method of cells model

is consistent. This consistency follows from the fact that when this model is employed to

predict the effective coefficients of thermal expansion, it provides the same estimate obtained

from Levin's result (73).

Like eqn. (73), it is possible (e.g. Dvorak (1992)) to establish the following estimate for

the overall inelastic strain _' of the composite

a=l/3=1 7=1

where QT(oaT) is the transpose of the mechanical concentration tensors,Q (°a7) that connect

the stress &(o_7) in the subcell to the total overall stress O" of the composite subjected to

homogeneous boundary conditions, i.e.

_(o_) = Q(._)a (75)

It can be easily verified that

Q(o_,) = C(o;_7) A(O_-r) B.-_ (76)

13



As in the thermal case, it can be numerically verified that the generalized cells model is

consistent in the sense that the overall inelastic strain determined directly from eqn. (70),

coincides with the values obtained by employing eqn. (74).

The micromechanically established overall thermo-inelastic constitutive law (68) is valid

for any type of thermomechanical loading (i.e., any combination of normal, shear and thermal

loadings). A significant advantage of this constitutive law stems from the fact that it does

not rely on any symmetry conditions that may exist under certain types of applied loadings.

Thus in the implementation of this law, the question as to whether such symmetry conditions

exist or not is irrelevant.

6 Conclusion

A micromechanical theory is offered according to which an elastic-thermo-inelastic consti-

tutive law which governs the overall behavior of short-fiber composites is established. This

theory relies on the assumption that the composite possesses a periodic structure so that

it is sufficient to analyze a repeating volume element. This repeating volume element (or

cell) can include an arbitrary number of subcells, so that multiphased composites contain-

ing short fibers and arranged in various configurations (e.g. square, hexagonal, or square

diagonal packing) can be considered.

The established constitutive law is based on the principles of continuum mechanics where

microequilibrium and continuity of displacements and tractions at the various interfaces are

ensured in an averaged sense. The key ingredient in the construction of this macro constitu-

tive law, is the establishment of the appropriate concentration tensors, A (_'_) and D (_t_'_) at

the microlevel. Given these concentration tensors, the average stress and strain micro field

variables in the subcell can then be expressed in terms of the uniform overall strain and the

subcell inelastic and thermal strains, see equations (66) and (67). The macromechanical law

is then established by applying a homogenization (or averaging) procedure, see equations (7)

and (9), to the microscopic thermo-inelastic constitutive equations.

The established analytic constitutive law can be readily applied to investigate the behav-

ior of various types of composites given knowledge of the behavior of the individual phases.

Numerous advantages can be stated regarding the current macro/micro constitutive laws as

compared to the other numerical micromechanical approaches in the literature, e.g. the finite

element unit cell approach. One advantage is the fact that any type of simple or combined

loading (multiaxial state of stress) can be applied irrespective of whether symmetry exist or

not, as well as without resorting to different boundary condition application strategies as in

the case of the finite element unit cell procedure. Another, advantage concerns the availabil-

ity of an analytical expression representing the macro elastic-thermo-inelastic constitutive

law, thus ensuring an economy of memory when implementing this formulation into a struc-

tural finite element analysis code. Furthermore, this formulation has been shown to predict

accurate macro behavior given only a few number of subcells, within the repeating cell (see

Paley and Aboudi (1991), and Arnold et al.(1993)). Whereas, if one employs the finite ele-

ment unit cell procedure, a significant number of finite elements are required within a given

repeating cell to obtain the same level of accuracy as with the present formulation. As a re-

sult it is possible to utilize the presented constitutive law to efficiently analyze metal matrix

14



compositestructures subjectedto complexthermomechanicalloadings. This is particularly
important when analyzingrealistic structural components,sincedifferent loading conditions
exist throughout the structure, thus necessitatingthe application of the macromechanical
equationsrepeatedly at theselocations.
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